Indian Language Benchmark Portal

7 results
Sort:

Please Login/Register to submit the new Resources

Curriculum Learning Strategies for Hindi-English Codemixed Sentiment Analysis
Anirudh DahiyaNeeraj BattanManish ShrivastavaDipti Mishra Sharma

Sentiment Analysis and other semantic tasks are commonly used for social media textual analysis to gauge public opinion and make sense from the noise on social media. The language used on social media not only commonly diverges from the formal language, but is compounded by codemixing between languages, especially in large multilingual societies like India. Traditional methods for learning semantic NLP tasks have long relied on end to end task specific training, requiring expensive data creation process, even more so for deep learning methods. This challenge is even more severe for resource scarce texts like codemixed language pairs, with lack of well learnt representations as model priors, and task specific datasets can be few and small in quantities to efficiently exploit recent deep learning approaches. To address above challenges, we introduce curriculum learning strategies for semantic tasks in code-mixed Hindi-English (Hi-En) texts, and investigate various training strategies for enhancing model performance. Our method outperforms the state of the art methods for Hi-En codemixed sentiment analysis by 3.31% accuracy, and also shows better model robustness in terms of convergence, and variance in test performance.

Humor Detection in English-Hindi Code-Mixed Social Media Content : Corpus and Baseline System
Ankush KhandelwalSahil SwamiSyed S. AkhtarManish Shrivastava

The tremendous amount of user generated data through social networking sites led to the gaining popularity of automatic text classification in the field of computational linguistics over the past decade. Within this domain, one problem that has drawn the attention of many researchers is automatic humor detection in texts. In depth semantic understanding of the text is required to detect humor which makes the problem difficult to automate. With increase in the number of social media users, many multilingual speakers often interchange between languages while posting on social media which is called code-mixing. It introduces some challenges in the field of linguistic analysis of social media content (Barman et al., 2014), like spelling variations and non-grammatical structures in a sentence. Past researches include detecting puns in texts (Kao et al., 2016) and humor in one-lines (Mihalcea et al., 2010) in a single language, but with the tremendous amount of code-mixed data available online, there is a need to develop techniques which detects humor in code-mixed tweets. In this paper, we analyze the task of humor detection in texts and describe a freely available corpus containing English-Hindi code-mixed tweets annotated with humorous(H) or non-humorous(N) tags. We also tagged the words in the tweets with Language tags (English/Hindi/Others). Moreover, we describe the experiments carried out on the corpus and provide a baseline classification system which distinguishes between humorous and non-humorous texts.

Gender Prediction in English-Hindi Code-Mixed Social Media Content : Corpus and Baseline System
Ankush KhandelwalSahil SwamiSyed Sarfaraz AkhtarManish Shrivastava

The rapid expansion in the usage of social media networking sites leads to a huge amount of unprocessed user generated data which can be used for text mining. Author profiling is the problem of automatically determining profiling aspects like the author's gender and age group through a text is gaining much popularity in computational linguistics. Most of the past research in author profiling is concentrated on English texts \cite{1,2}. However many users often change the language while posting on social media which is called code-mixing, and it develops some challenges in the field of text classification and author profiling like variations in spelling, non-grammatical structure and transliteration \cite{3}. There are very few English-Hindi code-mixed annotated datasets of social media content present online \cite{4}. In this paper, we analyze the task of author's gender prediction in code-mixed content and present a corpus of English-Hindi texts collected from Twitter which is annotated with author's gender. We also explore language identification of every word in this corpus. We present a supervised classification baseline system which uses various machine learning algorithms to identify the gender of an author using a text, based on character and word level features.

A Corpus of English-Hindi Code-Mixed Tweets for Sarcasm Detection
Sahil SwamiAnkush KhandelwalVinay SinghSyed Sarfaraz AkhtarManish Shrivastava

Social media platforms like twitter and facebook have be- come two of the largest mediums used by people to express their views to- wards different topics. Generation of such large user data has made NLP tasks like sentiment analysis and opinion mining much more important. Using sarcasm in texts on social media has become a popular trend lately. Using sarcasm reverses the meaning and polarity of what is implied by the text which poses challenge for many NLP tasks. The task of sarcasm detection in text is gaining more and more importance for both commer- cial and security services. We present the first English-Hindi code-mixed dataset of tweets marked for presence of sarcasm and irony where each token is also annotated with a language tag. We present a baseline su- pervised classification system developed using the same dataset which achieves an average F-score of 78.4 after using random forest classifier and performing 10-fold cross validation.

Cross-Lingual Task-Specific Representation Learning for Text Classification in Resource Poor Languages
Nurendra ChoudharyRajat SinghManish Shrivastava

Neural network models have shown promising results for text classification. However, these solutions are limited by their dependence on the availability of annotated data. The prospect of leveraging resource-rich languages to enhance the text classification of resource-poor languages is fascinating. The performance on resource-poor languages can significantly improve if the resource availability constraints can be offset. To this end, we present a twin Bidirectional Long Short Term Memory (Bi-LSTM) network with shared parameters consolidated by a contrastive loss function (based on a similarity metric). The model learns the representation of resource-poor and resource-rich sentences in a common space by using the similarity between their assigned annotation tags. Hence, the model projects sentences with similar tags closer and those with different tags farther from each other. We evaluated our model on the classification tasks of sentiment analysis and emoji prediction for resource-poor languages - Hindi and Telugu and resource-rich languages - English and Spanish. Our model significantly outperforms the state-of-the-art approaches in both the tasks across all metrics.

Emotions are Universal: Learning Sentiment Based Representations of Resource-Poor Languages using Siamese Networks
Nurendra ChoudharyRajat SinghIshita BindlishManish Shrivastava

Machine learning approaches in sentiment analysis principally rely on the abundance of resources. To limit this dependence, we propose a novel method called Siamese Network Architecture for Sentiment Analysis (SNASA) to learn representations of resource-poor languages by jointly training them with resource-rich languages using a siamese network. SNASA model consists of twin Bi-directional Long Short-Term Memory Recurrent Neural Networks (Bi-LSTM RNN) with shared parameters joined by a contrastive loss function, based on a similarity metric. The model learns the sentence representations of resource-poor and resource-rich language in a common sentiment space by using a similarity metric based on their individual sentiments. The model, hence, projects sentences with similar sentiment closer to each other and the sentences with different sentiment farther from each other. Experiments on large-scale datasets of resource-rich languages - English and Spanish and resource-poor languages - Hindi and Telugu reveal that SNASA outperforms the state-of-the-art sentiment analysis approaches based on distributional semantics, semantic rules, lexicon lists and deep neural network representations without sh

Towards Sub-Word Level Compositions for Sentiment Analysis of Hindi-English Code Mixed Text
Ameya PrabhuAditya JoshiManish ShrivastavaVasudeva Varma

Sentiment analysis (SA) using code-mixed data from social media has several applications in opinion mining ranging from customer satisfaction to social campaign analysis in multilingual societies. Advances in this area are impeded by the lack of a suitable annotated dataset. We introduce a Hindi-English (Hi-En) code-mixed dataset for sentiment analysis and perform empirical analysis comparing the suitability and performance of various state-of-the-art SA methods in social media. In this paper, we introduce learning sub-word level representations in LSTM (Subword-LSTM) architecture instead of character-level or word-level representations. This linguistic prior in our architecture enables us to learn the information about sentiment value of important morphemes. This also seems to work well in highly noisy text containing misspellings as shown in our experiments which is demonstrated in morpheme-level feature maps learned by our model. Also, we hypothesize that encoding this linguistic prior in the Subword-LSTM architecture leads to the superior performance. Our system attains accuracy 4-5% greater than traditional approaches on our dataset, and also outperforms the available system for sentiment analysis in Hi-En code-mixed text by 18%.

Filter by Author
P. D. Gujrati (8)
Manish Shrivastava (7)
Umapada Pal (5)
Partha Pratim Roy (5)
Iti Mathur (4)
C.V. Jawahar (4)
More