Indian Language Benchmark Portal

2 results
Sort:

Please Login/Register to submit the new Resources

Improved Sentiment Detection via Label Transfer from Monolingual to Synthetic Code-Switched Text
Bidisha SamantaNiloy GangulySoumen Chakrabarti

Multilingual writers and speakers often alternate between two languages in a single discourse, a practice called "code-switching". Existing sentiment detection methods are usually trained on sentiment-labeled monolingual text. Manually labeled code-switched text, especially involving minority languages, is extremely rare. Consequently, the best monolingual methods perform relatively poorly on code-switched text. We present an effective technique for synthesizing labeled code-switched text from labeled monolingual text, which is more readily available. The idea is to replace carefully selected subtrees of constituency parses of sentences in the resource-rich language with suitable token spans selected from automatic translations to the resource-poor language. By augmenting scarce human-labeled code-switched text with plentiful synthetic code-switched text, we achieve significant improvements in sentiment labeling accuracy (1.5%, 5.11%, 7.20%) for three different language pairs (English-Hindi, English-Spanish and English-Bengali). We also get significant gains for hate speech detection: 4% improvement using only synthetic text and 6% if augmented with real text.

All that is English may be Hindi: Enhancing language identification through automatic ranking of likeliness of word borrowing in social media
Jasabanta PatroBidisha SamantaSaurabh SinghAbhipsa BasuPrithwish MukherjeeMonojit ChoudhuryAnimesh Mukherjee

In this paper, we present a set of computational methods to identify the likeliness of a word being borrowed, based on the signals from social media. In terms of Spearman correlation coefficient values, our methods perform more than two times better (nearly 0.62) in predicting the borrowing likeliness compared to the best performing baseline (nearly 0.26) reported in literature. Based on this likeliness estimate we asked annotators to re-annotate the language tags of foreign words in predominantly native contexts. In 88 percent of cases the annotators felt that the foreign language tag should be replaced by native language tag, thus indicating a huge scope for improvement of automatic language identification systems.

Filter by Author
P. D. Gujrati (8)
Manish Shrivastava (7)
Umapada Pal (5)
Partha Pratim Roy (5)
Iti Mathur (4)
C.V. Jawahar (4)
More